
Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 26, No. 3, 2024 

 

A method for determining the location and type of fault in transmission network 

using neural networks and power quality monitors 

 

Indexed by: 

  

Mario Šipoša, Zvonimir Klaićb,*, Karlo Emmanuel Nyarkob, Krešimir Feketeb 

 

 

a Croatian Armed Forces, Croatia 
b Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, Croatia., Croatia 

 

Highlights  Abstract  

▪ The paper proposes a new procedure using 

neural networks to determine the location of a 

fault on a power line. 

▪ The procedure involves four stages, three of 

which employ neural networks. 

▪ The procedure was tested on the IEEE 39 bus 

transmission system using the DIgSILENT 

PowerFactory software. 

 

 In this paper, a procedure for determining the location of a fault on a 

power line using neural networks is proposed. Specifically, the 

procedure involves four stages (three of which employ neural networks): 

gathering voltage input data from power quality monitors via simulation, 

classifying the fault type, detecting the faulted line, and determining the 

fault position on the power line. The IEEE 39 bus test system was used 

to develop and test the mentioned model. Input voltages are obtained 

using DigSILENT PowerFactory software in which a set of three-phase 

and single-phase short circuits are simulated. For the next steps of the 

method, voltages from all buses are not used, but only voltages from 

optimally placed power quality monitors on 12 buses in the IEEE 39 bus 

test system. In the second step, the first neural network is employed in 

order to classify the fault type – single-phase or three-phase. In the third 

stage, another neural network is used to determine the faulted line and in 

the fourth stage, the last neural network is developed to determine the 

fault position on the faulted line. 
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1. Introduction 

Today, thanks to improvements made in measurement devices 

and their communication capabilities with SCADA systems, the 

process of recording, analyzing, and learning of faults has 

become more streamlined, allowing operators to identify faults 

quickly throughout the network. Despite the assistance provided 

by fault data recorders in identifying faults, determining the 

precise location remains an arduous task. Traditional methods 

such as impedance-based techniques and traveling wave 

analysis have been employed for pinpointing fault locations. 

However, those approaches are limited when the electricity 

distribution network experiences modifications due to factors 

like incorporating Distributed Generations (DGs), shifting loads, 

or modifying tap settings. An alternative method, the Adaptive 

Localizing Method (ALM), was proposed recently. ALM can 

overcome some drawbacks of current techniques and effectively 

deal with network variations, enabling accurate localization of 

faults [17].  

In earlier days, the supervisory control and data acquisition 
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system (SCADA) was used primarily to observe the overall 

performance of the power system using data gathered by remote 

terminal units (RTU) [11] this approach offered only surface-

level insights into the system's status. To obtain a deeper 

understanding of the system operations, the deployment of 

phasor measurement units (PMUs) facilitated advanced wide-

area measurement systems (WAMS). PMUs collect vital data 

points, including voltage, current, and frequency, along with 

time stamps, utilizing GPS technology via a phasor data 

concentrator (PDC). Such sophisticated measurements allowed 

monitoring of the power system's steady-state and dynamic 

aspects. As a result, innovative wide-area fault location schemes 

were developed. While the previously discussed systems offer 

real-time monitoring data, identifying faults depends mainly on 

human expertise, which increases the likelihood of human error. 

Artificial Intelligence (AI) methods, specifically Machine 

Learning (ML), have emerged as alternatives for fault detection, 

classification, and localization owing to the shortcomings of 

traditional methods and limitations in deploying Phasor 

Measurement Units (PMUs). Machine Learning (ML) methods 

can work alongside SCADA and WAMS depending on whether 

the focus is on making online or offline decisions. Their 

capacity for rapid adaptation enables them to effortlessly 

recognize alterations within the grid's operating parameters and 

take corresponding actions. Utilizing pre-fault and post-fault 

current records allows ML algorithms to determine patterns that 

are indicators of potential faults [17]. 

The paper is organized as follows: Section 2 

comprehensively describes the literature on neural networks 

employed for fault detection in electrical grids. Section 3, 

Theoretical Background on Voltage Sags. Section 4 describes 

the methodology used to simulate single-phase and three-phase 

short circuits in the IEEE 39 bus transmission system using 

DIgSILENT PowerFactory software. The study focused on 

simulating a specific transmission line, labeled line 26-29, for 

evaluating the accuracy of fault location detection methods. 

Section 5 presents the findings of the study based on the 

simulations performed using various neural network 

architectures and training datasets. The results showed that the 

proposed fault detection and classification methods achieved 

high accuracy rates. The report also highlights the importance 

of selecting the exemplary neural network architecture and 

training dataset for optimal performance in real-world power 

grids. 

2. Literature review 

A novel method for identifying faults within electrical grids has 

been proposed by Xing et al. [18]. Their approach involved 

augmenting the traditional convolutional neural network image 

recognition algorithm ResNet, proposed by He et al. [7], with 

the improved Inception-ResNet model, enabling them to handle 

intricate images derived from modern smart grid technology 

efficiently. Moreover, they collected data on different types of 

faults, including single-phase, double-phase, two-phase, and 

triple-phase circuit faults taken from the IEEE39 bus system 

model. Furthermore, using a binary classification framework, 

they classified three-phase faults as simple and single-phase 

earth faults as complex. Simulation results showed that the 

improved Inception-ResNet model achieved better accuracy 

than other image classification algorithms based on deep 

learning. 

Jiang et al. [8] introduced a novel solution for recognizing 

faults in electrical networks, which involves converting data 

acquired via Phasor Measurement Units (PMUs) into line 

graphs as input for the VGG convolutional neural network. By 

transforming PMU information into line graphs, changes over 

time become more evident, allowing for faster calculations and 

more effective fault detection. Researchers have constructed an 

electrical grid simulation model using DigSILENT software and 

written code in Python to gather and preserve phasor 

measurement unit (PMU) data corresponding to numerous 

faults. The result showed that line chart training can accurately 

classify symmetrical and unsymmetrical faults. 

Orag et al. [13] have utilized artificial neural networks 

(ANN) to develop a novel technique for identifying and locating 

faults in electricity grids with high accuracy. They leveraged 

computer-simulated data in Matlab/Simulink from a 330-kV, 

500-kilometer three-phase transmission line located in Nigeria 

to create realistic scenarios involving various types of faults, 

including single line-to-ground, double line-to-ground, and 

three-phase to-ground faults. By training the ANN algorithm on 

these synthesized datasets, they achieved perfect fault detection 

rates of 99.5% fault localization accuracy across diverse 

distances. 
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Fahim et al. [4] introduced an innovative Self-Attention 

Convolutional Neural Network (SAT-CNN) architecture for 

time series imaging-based feature extraction to enhance the 

accuracy of Transmission Line Fault Detection and 

Classification. A power system network 220 kV, 50 Hz grid with 

a total length of 100 km was modeled in Matlab. Experiments 

conducted in this setting showed promising results compared to 

existing models, highlighting the potential advantages of the 

proposed approach. 

Li et al. [12] have introduced a new method for the real-time 

localization of faulted lines within a power grid network using 

Convolutional Neural Network technology. The proposed 

solution relies on collecting PMU measurements taken before 

and during a fault event from selected buses throughout the grid. 

Bus voltages act as inputs into a CNN classifier based on the 

AlexNet architecture, which can distinguish unique 

characteristics of each type of fault (three-phase short circuit, 

line to ground, double line to ground, or line-to-line fault) from 

simulated scenarios modeled using Power System Toolbox 

Matlab. After validation through testing on IEEE 39 and 68 bus 

system configurations, the method demonstrates strong 

performance in accurately determining the fault locations. 

Han et al. [6] propose a new methodology for fault diagnosis 

in power systems by introducing novel preprocessing 

techniques involving gradient calculations and similarity 

assessments, leading to the creation of Visualized Similarity 

Images (VSIs) that enhance the performance of Convolutional 

Neural Networks (CNNs) used to identify transmission line 

faults in the system. The research evaluated the proposed 

method through simulations of IEEE 24-bus power systems 

created in MATLAB/Simulink. Results indicate the proposed 

framework performs effectively with robust accuracy and 

tolerable sensitivity toward parameter settings. 

Tokel et al. [16] developed a detection and classification 

system for faults within an electric power network based on 

artificial neural networks using Matlab's neural network toolkit. 

They tested their algorithm using simulations of the IEEE 13-

bus test feeder run through the OpenDSS software, generating 

datasets representing regular operating states and fault 

conditions. Their findings indicated high success rates ranging 

from 99.4 percent to 99.8 percent across all fault categories 

when applying the system for diagnosis purposes. 

3. Theoretical Background 

Assessing the number of expected voltage sags and short 

interruptions at a particular location in the power system 

network during a specific period can be beneficial as these 

power quality issues have significant economic consequences. 

The method of fault position is well-known for stochastic 

assessment of voltage sags induced by short circuits in large 

power systems. The method determines the probability density 

function of voltage dips due to short circuits in the network. The 

residual voltage on a given busbar (r) is expressed as a function 

of the moving fault node's (f) position (Figure 1). This results in 

a deterministic relation that connects two stochastic variables: 

fault position and residual voltage. The ultimate goal of the 

method is the cumulative frequency of events for a specific bus 

expression (1).
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Fig. 1. Fault position between buses p and q.
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𝐹𝑣
𝑚(𝑣) = ∑ 𝐹𝑣(𝑣)𝑛𝐿𝑖

𝐿𝑖𝑛𝑒=1    (1) 

In our research in [14], we applied the binary bat algorithm 

to identify the most suitable sites for placing voltage dip 

measuring devices and to determine the optimal number of such 

devices required to achieve maximum coverage at a minimal 

cost. It means that there are sufficient (optimally placed) voltage 

dip monitors to record every voltage dip in the test system due 

to any fault occurring anywhere in the test system. By 

improving the objective function (2), we utilized a Monitor 

Reach Area Matrix developed via short circuit simulations and 

the Exposed Coefficient to guide the algorithm toward its 

optimum solution. The optimal number of voltage dip 

measuring instruments for the IEEE 39 bus transmission system 

was twelve, and devices were placed on buses 12, 20, 25, 30 – 

38. 

𝑀𝑖𝑛 (∑ 𝑥𝑖 + ∑ 𝑥𝑖 ∙ 𝑘𝑖

𝑁

𝑖=1

𝑁

𝑖=1
)                             (2) 

where xi is the system bus (has a value of 0 or 1), and ki is the 

weighted coefficient of the exposed area. 

The research results in [14], the optimal number and 

placement of voltage dip monitors, gave us an idea and 

possibility for the next step: determining the location of the fault 

based on recorded voltage dips [15]. In [15], fault-affected lines 

were classified using the decision tree algorithm, giving 

accurate results. However, using multiple linear regression to 

determine the fault location at the line length did not give 

satisfactory results for all lines. 

So, in this article, we use neural networks to determine the 

power system's fault position. From [14] we have the number 

and position of voltage dip monitoring devices in the IEEE 39 

bus test system. The voltage values from the twelve buses 

during the voltage dip were used as input data for the neural 

network. These inputs are based on the changes in voltages 

measured during power system faults, expressed in per unit (p.u.) 

values. 

4. Test model 

This study focused on performing simulations of both three-

phase and single-phase short circuits in the IEEE 39 bus 

transmission system using the DIgSILENT PowerFactory 

software. The simulation followed the standards specified by 

IEC 60909. The IEEE 39 bus system is modeled after New 

England's high voltage grid with four different voltage levels: 

345 kV, 230 kV, 138 kV, and 16.5 kV. The system has ten 

generators, twelve transformers, 34 power lines, and nineteen 

load nodes [14]. Fig. 2.  represents the IEEE 39 bus test system, 

where specific buses have been identified for installing voltage 

dip measurement devices. These devices are denoted by 

monitors displaying the corresponding bus numbers. 

Furthermore, a particular transmission line, labeled as Line 26-

29, will serve as the testing ground for evaluating the accuracy 

of a fault location determination method along the transmission 

line length

 

Fig. 2. The IEEE 39 bus test system.
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5. Simulation results 

The procedure for determining the fault position in the IEEE 

39 bus test system consists of 4 steps and 3 neural networks, 

figure 3. 

START

Input data: voltages 

(p.u.) from the 12 

voltage dip 

monitoring devices

NN 1: 

Fault Type 

Classification

NN 2: 

Detecting 

faulted line

NN 3: 

Determining the 

fault position

Fault Type

Faulted Line

Fault Position

END
 

Fig. 3. The procedure for determining the fault position. 

The fault detection process collects data from 12 buses in 

real time as input. Based on this input data and with the aid of 

the first neural network, the system then classifies the fault as 

either a three-phase or single-phase short circuit. After 

classifying the fault type, the second neural network is used to 

detect the line which is experiencing the fault. Depending on the 

detected line, the third neural network detects the fault position, 

whereby the result is given as a percentage of the line length. 

All three values, fault type, faulty line and fault position, are 

grouped together and shown on a display. 

5.1. Input data: voltage values (p.u.) from the 12 voltage 

dip monitoring devices 

Initially, it is necessary to simulate a three-phase or single-phase 

short circuit at an arbitrary location on the arbitrary power line 

in the IEEE 39 bus test system. This simulation is performed 

using the DIgSILENT PowerFactory software. The short circuit 

simulation will cause changes in the voltages on busbars in the 

test system, which will be reflected in the voltages on the 12-

voltage dip monitors. In every short-circuit simulation, voltage 

values were obtained on the power quality monitors that are 

optimally located on the 12 busbars of the system. Many sets of 

bus voltage values were used as input data for further steps of 

the proposed method (three neural networks). 

5.2. Fault Type Classification 

In this step, the type of fault is classified - whether it is a single 

line to ground or a three-phase fault. In multilayer neural 

networks, the number of neurons in the hidden layer is a crucial 

parameter that determines the capacity and complexity of the 

model. When selecting the appropriate number of neurons in the 

hidden layer, the complexity of the model, the computational 

efficiency and the ability to learn and generalize from the data 

must be weighed against each other. In this paper, we started 

with a single neuron in the hidden layer to train and test the 

network. Then we train the network again with the same training 

set, validation set and test set and increase the number of 

neurons in the hidden layer by one neuron. From the results 

obtained by simulation, we select the model with the lowest 

error (mean squared error) as that which defines the optimal 

number of neurons in the hidden layer to solve the given 

classification problem. This procedure was used to determine 

the optimal neural network structures for all three neural 

networks. For the fault type classification problem, the optimal 

number of neurons in the hidden layer was found to be 3.  

The complete neural network structure for the fault type 

classification problem consists of three layers. The first layer or 

the input layer consists of 12 neurons. This number of neurons 

is determined by the number of inputs. The second or hidden 

layer consists of 3 neurons. This was determined by the 

aforementioned procedure. Finally, the final or output layer 

contains one neuron as the network's output. In the input layer, 

there are 12 p.u. voltage values on busbars obtained from 

voltage dip monitors during a single-phase and three-phase 

short circuit on the transmission line. The output layer of this 

neural network provides information as to whether a single-

phase or three-phase short circuit has occurred. In this network, 
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we used the hyperbolic tangent (tanh) activation function 

(defined by Equation (3) and displayed in Fig. 4.) for the hidden 

layer and the sigmoid activation function (defined by Equation 

(4) and displayed in Fig. 5.) for the output layer.  

 𝑓(𝑥) = tanh 𝑥 =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥                                  (3) 

TanH is a type of nonlinear activation function that has a 

center point at 0, and its output values span the range from -1 to 

1, as shown in Figure 4. Primarily employed within hidden 

layers, TanH aids in data centering because its mean is close to 

0 or exactly 0. This property facilitates the learning process for 

subsequent layers [9] 

 

Fig. 4. Hyperbolic tangent activation function. 

The utilization of the sigmoid activation function for the 

output layer in our model stems from the inherent requirement 

of performing binary classification, explicitly distinguishing 

between single-phase and three-phase short circuits. 

The sigmoid activation function is a widely used activation 

function with broad applications. It can be mathematically 

expressed by equation (4). 

                  𝑓(𝑥) =
1

1+𝑒−𝑥                                                (4) 

The sigmoid function's graph is depicted in Fig. 5. When the 

input value, x, is small, the output of the sigmoid function 

approaches 0. Conversely, for larger x values, the output tends 

toward 1. By employing the sigmoid function, continuous real 

numbers are transformed into a range between 0 and 1. 

Consequently, this confines the input values of the subsequent 

layer within a fixed range, promoting more stable weight values 

[2].  

 

Fig. 5. sigmoid function. 

There are 6696 examples in the dataset. Each example 

consists of 12 p.u. voltage values on the busbars during a short 

circuit on the transmission lines. Four thousand eighteen (4018) 

serve as training cases (60%), and the rest are divided into 

validation and testing sets, each having 1339 records (20% and 

20%), respectively. The test set was then used to assess the 

effectiveness and accuracy of the trained network. By 

examining how well the trained network performed on unseen 

data, it became possible to evaluate its generalization abilities 

and understand if it could make accurate predictions outside its 

initial range of experience.  

The confusion matrix is a commonly employed evaluation 

metric for addressing classification problems, suitable for 

binary and multiclass classification scenarios. Table 1. shows  

a confusion matrix specifically intended for binary 

classification. 

Table 1. Confusion matrix specifically intended for binary 

classification. 

 Predicted Positive Predicted Negative 

Actual Positive True Positive (TP) False Negative (FN) 

Actual Negative False Positive (FP) True Negative (TN) 

Regarding classification performance assessment, true 

positives (TP) correspond to instances where the algorithm 

correctly identifies positive outcomes based on the data. 

Conversely, false positives (FP) occur when the algorithm 

incorrectly labels negative outcomes as positive. False 

negatives (FN) refer to cases where the algorithm wrongly 

classifies positive outcomes as negative. True negatives (TN) 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 26, No. 3, 2024 

 

represent instances where the algorithm accurately recognizes 

negative outcomes. 

The Confusion Matrix can be used to calculate performance 

metrics such as accuracy, precision, and Recall. It provides 

insight into how well the model performs by displaying the 

number of correctly classified examples against the total 

number of test samples from each label. Accuracy measures 

what percentage of all predictions were correct and is given by 

Equation (5). Accuracy is calculated as the sum of true positives, 

and true negatives divided by the sum of true positives, true 

negatives, false positives, and false negatives. The accuracy in 

a confusion matrix shows the proportion of correctly classified 

instances out of the total cases. 

         𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(TP +  TN) 

(TP +  TN +  FP +  FN)
                           (5) 

Precision calculates the proportion of true positive results 

compared to the total number of positive results and is defined 

by Equation (6). Precision is given by the number of true 

positives divided by the sum of true positives and false positives. 

Precision in a confusion matrix shows the ratio of true positive 

predictions to the total number of positive predictions. 

                         𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP 

(TP +  FP) 
                                    (6) 

Recall calculates the proportion of correctly classified 

positives compared to the total number of actual positives (7). 

Recall is given by the number of true positives divided by the 

sum of true positives and false negatives. It shows the number 

of true positive predictions divided by the total number of actual 

positive instances. 

                            𝑅𝑒𝑐𝑎𝑙𝑙 =
TP 

(TP +  FN)
                                        (7) 

The different classes the model was trained upon are 

represented by the rows of the Confusion Matrix. Columns 

contain the outcome when using said prediction function. Each 

entry gives information about one class example. Summary stats 

can be found along diagonals where entries equal the number of 

ground truth matches for the corresponding row or column. The 

diagonal cells in the table show the number of correctly 

classified cases, and the off-diagonal cells show the 

misclassified cases [1].  

For the current classification problem, the total number of 

test samples is 1339. The results obtained using the trained 

neural network on the test set is displayed with the aid of a 

confusion matrix in Table 2. The number of correctly classified 

samples is 1339 (100.0%), and the number of misclassified 

samples is 0 (0.0%). There are no misclassified samples, so the 

neural network predicts this test data very well. The presented 

confusion matrix displays a classification of fault types. The 

total test sample shows 675 instances of single-line to-ground 

(1f) faults, accounting for 50.3% of the total. 

Additionally, there are 665 occurrences of three-phase (3f) 

faults, representing 49.7% of the total sample. According to 

equations, Accuracy, Precision, and Recall are equal to 1 or 100% 

because there are no false positive and false negative values. 

Accuracy, precision, and recall need to be calculated separately 

for each class. In binary classification, the class receives the 

value 0 or 1. In our case, 0 represents a 1f fault, and 1 represents 

a 3f fault, where the value of 1f is the TP value in the confusion 

matrix, and 3f is the TN. 

Table 2. Confusion matrix for single line to ground and three-

phase fault classification. 

 Predicted 1f Predicted 3f Total 

Real 1f 674 (50,3%) 0 (0,0%) 674 (50,3%) 

Real 3f 0 (0,0%) 665 (49,7%) 665 (49,7%) 

Total 647 (50,3%) 665 (49,7%) 1339 (100%) 

5.3. Detecting faulted line 

In this study, the power network utilized is the IEEE 39 bus 

transmission system, which comprises 34 power lines. The 

identification of a defective power line is performed through  

a neural network application. This neural network consists of 

three layers: an input layer with twelve neurons, a hidden layer 

containing twenty-two neurons (determined using the 

aforementioned method in Subsection 5.2), and an output layer 

comprised of thirty-four neurons. The hyperbolic tangent 

activation function was chosen as the activation function within 

the model's hidden layers, while the softmax activation function 

was used for the output layer.  

In multiclass classification challenges paired with cross-

entropy loss, the softmax activation function is frequently 

utilized within the output layer. Its purpose is to scale the raw 

outputs generated by the preceding layer so that they sum up to 

1. Usually, the previous layers generate an unscaled likelihood 

value for each class. Softmax modifies these values to generate 
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precise probabilities for each class membership option [10]. 

 

Multi-classification assignments usually benefit from 

conventional softmax classifiers due to their outstanding 

effectiveness. Normalizing diverse characteristics based on the 

number of classifications makes the positive elements more 

visible. Widely applied today, the softmax function frequently 

forms part of a loss function when working alongside the cross-

entropy objective during classification [5]. 

The input layer of the neural network consists of 12 p.u. 

Voltage values were obtained from voltage dip monitors 

installed on busbars during a three-phase short circuit event on 

the transmission line. This data serves as the input to the 

network. On the other hand, the output layer of the neural 

network is responsible for providing information related to the 

faulted line, that is, the output neuron with the highest value 

(closest to one) indicates the line number where the fault is 

detected. 

Of 3400 samples, 60%, 20%, and 20% are dedicated to 

training, validation, and testing. That is 2040, 680, and 680 

samples. In the test data set, there are a total of 680 testing 

samples. After classification, it was observed that out of these 

samples, 98.7% were accurately categorized as per the given 

labels, while the remaining 1.3% were incorrectly classified. 

Specifically, 671 and 9 samples fell into the correct and 

misclassified categories.  

When building a classification model, it is essential to know 

which of the samples are misclassified. This task involves 

identifying instances where the model has incorrectly 

categorized certain samples into classes they do not belong to. 

By doing so, we can better understand the strengths and 

weaknesses of our classifier and make improvements as needed. 

Neural networks learn patterns and relationships from the data 

they are trained on. If the training dataset does not adequately 

cover all possible fault scenarios or lacks sufficient examples of 

faults, the network may not generalize well to classify faults in 

that line correctly. Table 3 shows the misclassified lines.  

Table 3. Misclassified lines.  

Number 1 2 3 4 5 6 7 8 9 

Real line in fault L_7 L_10 L_10 L_14 L_23 L_32 L_32 L_33 L_33 

Misclassified line L_9 L_13 L_13 L_15 L_24 L_33 L_33 L_32 L_34 

5.4. Determining the fault position on the power line 

In this step, the location of the fault on the previously 

determined power line is determined by a neural network. The 

mentioned procedure was performed for Line 26-29. 

Neural networks are adept at executing a mapping that 

approximates a function, which is acquired by learning from  

a provided collection of input-output value pairs. This learning 

process is commonly accomplished using the backpropagation 

algorithm [17]. 

The neural network consists of an input layer with 12 

neurons, two hidden layers. The first consists of 3 neurons 

(determined arbitrarily), and the second consists of one neuron 

and an output layer of one neuron. In this model, the hyperbolic 

tangent activation function has been selected for the hidden 

layers, while the output layer employs the linear activation 

function. This activation function guarantees a derivative of 1 

consistently due to using the function f(x) = x [3]. The linear 

activation function is a simple activation function that outputs 

the input value without any transformation.  

The input layer of the neural network comprises 12 p.u. 

voltage values acquired from measuring devices placed on 

busbars during a three-phase short circuit event on the 

transmission line. These voltage values serve as the input data 

for the network. On the other hand, the output layer of the neural 

network provides information regarding the position of the fault 

on the line length, expressed as a percentage ranging from 1 to 

100%. For example, for a line 100 km long, a short circuit at 10% 

occurred on the tenth kilometer of the line as seen from the 

busbar with a lower number. Line 26-29 starts from busbar 26 

(1%) and ends with busbar 29 (100%). 

Fig 6. compares the predicted values by our neural network 

and the actual values for the output variable "Percent" – for Line 

26-29. The output variable is the percentage value of the line 

length from 1% to 100% when viewed from the busbar with  

a smaller number. The grey line represents the ideal scenario 

where the predicted outputs perfectly align with the target 

values. The neural network randomly selects actual percent 

values for testing the neural network from the entire input data 

set of 100 data representing the length of the lines in Percent. 
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Fig. 6. Comparison between the predicted values and the actual values.

The table shows the actual percentage of the fault location 

on the length of the transmission line, the predicted percentage, 

and the difference between these two values.  

The evaluated line in question was Line 26-29 of the IEEE 

39 bus test system, spanning 247.96 kilometers. The selection 

of Line 26-29, provides a substantial line length for evaluating 

fault location methods. This choice allows for testing the 

methodology on a realistic transmission line that closely 

resembles the scale and complexity of actual power systems. 

The smallest discrepancy was observed at 36% of the 

transmission line length, resulting in an error of merely 

0.0228 %, equivalent to approximately 57 meters. Conversely, 

the most significant deviation occurred at the full 24 % 

transmission line length, with an error of 1.18%, corresponding 

to approximately 2.92 kilometers. It is important to emphasize 

here that for the classification of lines using this method, there 

must be a separate neural network for each line. 

Table 4. IEEE 39 bus test system Line 26-29. 

Real Percent [%] Predicted Percent [%] Difference [%] 

5 6.127 1.127 

7 7.57569 0.57569 

13 12.3751 -0.6249 

18 16.86 -1.14 

24 22.8167 -1.1833 

25 23.8633 -1.1367 

36 36.0228 0.0228 

Real Percent [%] Predicted Percent [%] Difference [%] 

45 45.7875 0.7875 

49 49.7272 0.7272 

50 50.6718 0.6718 

53 53.4129 0.4129 

61 60.6192 -0.3808 

63 62.4994 -0.5006 

67 66.4472 -0.5528 

76 75.898 -0.102 

87 87.5107 0.5107 

91 91.4785 0.4785 

93 93.3374 0.3374 

94 94.2257 0.2257 

97 97.0824 0.0824 

We conducted simulations utilizing various numbers of 

neurons within the hidden layer, ranging from 1 to 30 neurons 

(using the procedure mentioned in subsectin 5.2). Among these 

configurations, the optimal outcome was achieved when 

employing 13 neurons in the first hidden layer.  

The following table compares using 3 neurons in the hidden 

layer and the associated error in predicting the percentage of 

line length. A positive value in the last column indicates that the 

neural network with 13 neurons in the hidden layer exhibited  

a more significant error, whereas a negative value suggests that 

the network with 3 neurons in the hidden layer demonstrated  

a more significant error.  

Upon examination, it becomes evident that in the event of  
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a fault occurring at 45% of the line length, the utilization of 13 

neurons in the hidden layer results in an error reduction of 

1382.78 meters compared to employing 3 neurons in the hidden 

layer. However, in the case of a fault at 7% of the line length, 

implementing 13 neurons in the hidden layer leads to an error 

increase of 714.55 meters.

Table 5. Comparison of 13 neurons in the first hidden layer. 

Real Percent [%] Predicted Percent [%] 13 Neurons [%] 3 Neurons [%] Error [m] 

5 6.40 1.40 1.13 704.34 

7 7.86 0.86 0.58 714.55 

13 12.65 0.35 0.62 -699.52 

18 17.12 0.88 1.14 -658.88 

24 22.99 1.01 1.18 -443.23 

25 24.01 0.99 1.14 -380.75 

36 35.72 0.28 0.02 664.97 

45 45.24 0.24 0.79 -1382.78 

49 49.30 0.30 0.73 -1084.33 

50 50.30 0.30 0.67 -955.80 

53 53.23 0.23 0.41 -464.06 

61 60.88 0.12 0.38 -670.81 

63 62.79 0.21 0.50 -736.85 

67 66.66 0.34 0.55 -550.67 

76 75.80 0.20 0.10 239.52 

87 87.48 0.48 0.51 -84.58 

91 91.49 0.49 0.48 37.08 

93 93.38 0.38 0.34 97.28 

94 94.28 0.28 0.23 132.59 

97 97.10 0.10 0.08 39.42 

6. Conclusion 

The paper proposed using multilayer neural networks to classify 

the fault in the power network, detect the faulty lines, and 

determine the place of fault that occurred along the length of the 

transmission lines of the IEEE 39 Bus test system. Three neural 

networks were used. The voltage values from the twelve busbars 

during the voltage dip were used as input data for the neural 

network. Each neural network has a different number of neurons 

in the hidden layer, which was determined by multiple 

simulations, and finally, the number of neurons with the lowest 

classification error was used. The results showed that neural 

networks could be used for the mentioned classification 

problems with accuracies of 100% for the classification of 

single-phase and three-phase short circuits and 98.7% for the 

classification of faulty lines when tested on data that neural 

networks did not see before. Also, the neural network was able 

to determine the position of the fault on line length with an error 

ranging from 0,0228% to 1,9% in the location of the fault. When 

utilizing 13 neurons in the hidden layer, there is a significant 

reduction in error by 1382.78 meters compared to only three 

neurons in the hidden layer in the event of a fault occurring at 

45% of the line length. In future research, we will focus on 

incorporating renewable energy sources, such as photovoltaic 

systems and wind farms, into the IEEE 39 bus test system. 

Subsequently, we aim to employ a neural network to discern the 

fault type and fault line in the transmission system while 

considering integrating renewable energy sources. 
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